

Research Article

Resistance profiling, evolution of biofilm formation and genetic diversity of *Vibrio alginolyticus* isolated from aquaculture systems

Rim LAJNEF^{1-3*}, Miguel Angel MORIÑIGO², Abdennaceur HASSEN¹, Lotfi BEN ABDALLAH³

¹ University of Carthage. Technopôle de Borj-Cédria. Centre des Recherches et des Technologies des eaux, Laboratoire de Traitement des Eaux Usées, Hammam-Lif, Tunisia
 ² Facultad de Ciencia de Malaga. Departamento de Microbiologia Malaga, Spain
 ³ University of Carthage. Institut National des Sciences et Technologies de la Mer, Salammbô, Tunisia

*Correspondence: <u>ryma.la11@yahoo.fr</u>

Received: 12/09/2023; Accepted: 24/04/2024; Published: 17/05/2024

Abstract: This study analyzes 26 presumptive *Vibrio alginolyticus* strains extracted from two fish farms (Khenis and Hergla, East Tunisia) that raised sea bream (*Sparus aurata*) and sea bass (*Dicentrarchus labrax*). In addition, from a shellfish farm located in Menzel Jmil, North Tunisia that raises mussels (*Mytilus edulis*) and oysters (*Crassostrea gigas*). We have evaluated (i) the discriminatory power of PCR-RFLP for identification of closely

related strains, (ii) the antibiotic resistance of the *V. alginolyticus* strains and (iii) their ability to form a biofilm in aquaculture farm.

Results showed that there is great heterogeneity in the diversity observed via the PCR-RFLP method related to the number of 20 genotypes generated by the two enzymes *Sdul* and *Faql* tested. The heterogeneity was observed in both fish (aquaculture farm) and bivalve (shellfish farm) origins, as well as in the same sample.

For antibiotic resistance, all isolates present a high resistance to ampicillin, erythromycin, cefotaxime, kanamycin and doxycycline. The resistance is displayed by 15 distinct profiles. The Multiple Antibiotic resistance (MAR) index was ranged from 0.55 to 0.80 for the isolates from the aquaculture farm of Hergla followed by the index aquaculture farm of Khenis (0.55 to 0.75). While for the shellfish farm of Menzel Jmil the index ranges from 0.50 to 0.65. This finding indicated high-risk sources of antibiotic contamination in the three locations. Isolates from aquaculture systems with strong biofilm formation have been found to be resistant to antibiotics, which may allow them to survive longer in these environments.

Present findings could be relevant in aquaculture systems and underscore the importance of the linkage between adhesion, antibiotic susceptibility, and genetic diversity of these pathogenic bacteria to avoid fish and shellfish diseases. The results will provide helpful guidance on how to use antibiotics to control *Vibrio alginolyticus* diseases in aquaculture to be healthy.

INSTM Bull. 2024, 49 3/20

Keywords: *Vibrio alginolyticus,* Aquaculture systems, PCR-RFLP, Antibiotic resistance, MAR, Biofilm formation, Tunisia

1. Introduction

Aquaculture worldwide has a high mortality rate due to *Vibrio alginolyticus* (Marhual et al., 2010). This bacterium is an economically catastrophic for marine fish, invertebrates and large marine mammals (Xie et al., 2020). In addition, *V. alginolyticus* has been reported to be involved in new human infections that may cause otitis externa, food poisoning related to consumption of raw or undercooked sea products, causing gastroenteritis and extra-intestinal diseases (Fu et al., 2016; Jacobs Slifka et al., 2017).

In Tunisia, V. alginolyticus was isolated for the first time in 1987 from diseased farmed gilthead sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax) (Bakhrouf et al., 1995). This pathogenic bacterium affects mainly larvae of sea bream and sea bass and was associated with high fish mortality in aquaculture systems causing important economic losses (Ben Kahla et al., 2009). Since the incidence of epizootics outbreaks has been on the increase. More recently, several cases of V. alginolyticus associated mortality have been reported in reared Chequered carpet shell (Ruditapes decussatus) larva and juvenile causing major economic losses to the infected hatchery (Mechri et al., 2017). Foremost this situation, several molecular typing techniques have been used for Vibrio species subtyping and for the study of their microbial epidemiology and ecology (Ben Abdallah et al., 2010; Lajnef et al., 2012; Thompson et al., 2004). RFLP, also known as restriction fragment length polymorphism (RFLP), is a method that uses variations in homologous DNA sequences. It concerns the variations among samples of homologs of restriction enzyme sites. Moreover, the PCR-RFLP is a variation of RFLP in which restriction. analysis is performed on PCR amplicons obtained using primers for specific

sequences of interest and could serve as a rapid tool to estimate the rapid tool to estimate the approximate phylogenetic relationship of isolates, without need for 16S rRNA sequencing (Urakawa et al., 1997). PCR-RFLP is temost recommended technique for characterization microorganisms due to its speed, reliability, and sensitivity (Felix et al., 2011). RFLP and PCR-based techniques are a great complement to traditional techniques when it comes to detecting antibiotic multi resistant (AMR) genes. They pinpoint that transfer resistance genes antimicrobials, while also accurately identifying the species of isolates studied (Galhano et al., 2021) Knowing Vibriosis is recognized as one of the most prominent diseases frequently affecting а wide variety of cultured species all over the world and it recognized by specific receptors belong to the pathogen recognition receptor system (Abouelmaattiet et al., 2013); the application of antibiotics in aquaculture especially used in fish farms either as feed additives or immersion baths to achieve either prophylaxis or therapy has led to the development of antibiotic-resistant bacteria and poses a serious challenge in the of infectious treatment diseases (Muhammed et al., 2019). In this context, higher frequency of multidrug-resistant V. alginolyticus has been reported by Lajnef et al., (2012), these gram-negative bacteria produce an extended-spectrum βlactamases (ESBLs) which is a significant resistance-mechanism and present serious threat to the currently available antibiotic armory (Shaikh et al., 2015). addition, V. alginolyticus can be

distinguished from other species by its

ability to possess polar and lateral flagella

which has been proven to be associated

with adhesion to surfaces and biofilm

formation (Chen et al., 2017).

According to Tang et al. (2009), bacterial adhesion and colonization are influenced by several factors. Examples of things to consider include bacterial species, bacterial surface, and chemical and physical interactions between the potential substrate and the polymeric adhesive. This adhesion can be a prerequisite for successful infection. After adhesion has taken place, bacteria could stimulate the expression of additional virulence genes and enliven host cell signaling pathways (Ovando Fraiha et al., 2019). Moreover, bacteria in biofilms can be 1,000-fold more resistant to environmental stress (Brooun et al., 2000) and to antibiotics and biocides (Rogers et al., 2010) than planktonic cells are, so the environmental survival, infectivity and transmission are enhanced due to strong biofilm formation ability of this pathogen (Elexson et al., 2014). According to Deng et al. (2020), aquaculture animal disease detection and pathogen resistance

development can be promoted recommending the 'Drug Reduction in 'Ecological Aquaculture' and Health Breeding' initiatives. These authors recommended monitoring, determination of suitable local antimicrobial profiles for aquaculture, provision of guidance for scientific medication, and promotion of vaccine use for disease prevention.

This study focused on multi resistant *Vibrio* alginolyticus species isolated from Tunisian aquaculture systems with the aim of exploring their prevalence and susceptibility, their ability to form a biofilm and their genetic diversity.

2. Materials and Methods

2.1. Sampling sites and strains identification

A total of twenty-six bacterial strains were isolated from two different fish farms (Khenis and Hergla) and one shellfish farm (Menzel Jmil) (Figure 1).

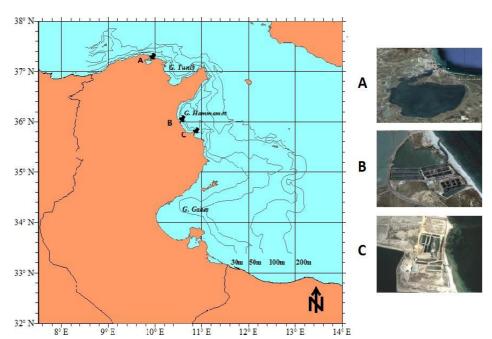


Figure 1. Map of Tunisia showing the different sites of *V. alginolyticus* strains isolated from each sample

Strains isolated from the aquaculture systems were identified as belonging to *V. alginolyticus* using several biochemical tests (Thompson *et al.*, 2004): KOH method (Gram non-staining) (Fluharty and Packard, 1967), cell morphology, motility,

oxidase test, growth on Thiosulfate Citrate Bile Sucrose (TCBS), susceptibility to the vibriostatic agent 0/129 (10 and 150 µg/disc) (Alsina and Blanch, 1994), production of arginine dihydrolase, lysine and ornithine decarboxylase, glucose

INSTM Bull. 2024, 49 5/20

fermentation, indole, hydrolyses of gelatin, of starch, of esculin and of Tween 80, reduction of nitrates to nitrites, production of gas from glucose, Methyl-Red test based on the gallery API 20E Kit "galleries API® 20E™ - biomérieux® SARCS LYON 67362039969280 Marcy-l'Etoile / France", growth at different temperatures (4°C, 37°C, 44°C) and salinities (0, 6, 8 and 10) (Krieg and Holt, 1984).

The DNA extraction and molecular identification of *V. alginolyticus* strains was done according to the protocol described by Di-Pinto *et al.* (2005) targeting the collagenase gene.

2.2. PCR-RFLP Analysis

The fragment was amplified using the universal primers SD-Bact-0008-a-S20 (5'AGA GTT TGA TCC TGG CTC AG 3') and SD-Bact-1492-a-A-19 (5'GGT TAC CTT GTT ACG ACT T 3') (Kim and Austin, 2006). Polymerase chain reactions were carried out in a 50 µl reaction mixture that included 5 pmol of each primer, 200 μM dNTPs, 1xPCR buffer, 2 mM MgCl2, 1 U BIOTAQ™ DNA polymerase (Bioline, London, UK) and 1 µl of extracted DNAs The PCR profile was as follows: 2 min at 95°C and 35 cycles of 30 s at 95°C, 30 sec at 52°C and 1.3 min at 72°C and a final step 5 min at 72°C. Polymerase chain reaction products were electrophoresed on a 1% agarose gel and visualized via ultraviolet trans-illumination.

The PCR products (10µI) were digested separately with Fagl (BsmFI) and Sdul (Bsp1286I) following the recommendations of the manufacturers (Thermo Scientific **Fermentas** Fast Digest Restriction Enzymes) and the reaction was stopped by addition of 15 µl of stabilized solution. **PCR** Digested products were electrophoresed in 2% agarose gels AGAROSE TYPE II-A MEDDIUM EEO (Sigma-Aldrich) in TAE buffer at 50V for 6 h. After electrophoresis, the gel was visualized via ultraviolet trans-illumination.

2.3. Determination of antibiotic susceptibility

antibiotic The susceptibility determined by using the Kirby-Bauer method and Mueller-Hinton agar plates supplemented with 1 % NaCl as described by Ottaviani et al. (2001). Antibiotics tested are as follow: Ampicilline (AMP) 10 lg, Cefotaxime (CTX) 30 lg, Chloramphenicol (C) 30 lg, Fosfomycin (FOS) 200 lg, Gentamycin (CN) 10 lg, Imipenem (IMI) 10 Ig, Kanamycin (K) 30 lg, Nalidixic Acid (NA) lg, Norfloxacine (NOR) 10 lg, Streptomycin (S) 10 lg, Sulfamethoxazole (SMX) 50 lg, Trimethoprime (TM) 5 lg, Doxycycline (DXT) 30 lg, Nitrofurantoine (F) 300 lg, Cephalothin (KF) 30 lg, Erythromycin (E) 15 lg, Ticarcilline (TC) 75 Ciprofloxacin (CIP) 5 lg, Trimethoprime Trimoxazole Sulfamethoxazole (SXT) 25 lg, Amikacin (AK) 30 lg (Liofilchem s.r.l., Roseto, Italy). After incubation at 37°C for 18-24 h, the diameter of the inhibition zone was measured with 1 mm flat rule and the diameters were interpreted according to Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolates from Animals (CLSI, 2008). For the two antibiotics (Fosfomycin and Doxycycline), results of the diameters of inhibition were interpreted according to the diameters indicated by the Liofilchem company.

2.4. Multiple antibiotic resistance (MAR) index

The MAR index of the isolates against the tested antibiotics was calculated based on the following formula: MAR Index of an isolate is defined as a ratio (a/b), where (a) represents the number of antibiotics to which the isolate was resistant and (b) represents the number of antibiotics to which the isolate was subjected (Jayaraman et al., 2008). MAR index values equal to or less than 0.2 were defined as those antibiotics that were rarely or never used for the animal in terms

INSTM Bull. 2024, 49 6/20

of treatment, however, MAR index value greater than 0.2 was considered an indicator of high risk of exposure to those antibiotics received by the animals (Sarter et al., 2007).

2.5. Phenotypic characterization of slime-producing bacteria

Qualitative detection of biofilm formation was studied by culturing the strains on Congo red agar (CRA) plates as described previously (Freeman *et al.*, 1989) *Vibrio* strains were inoculated into the surface of CRA plates, prepared by mixing 0.8 g Congo red with 36 g saccharose (Sigma) in 1 L of brain heart infusion agar, and were incubated for 24 h at 30°C under aerobic conditions and followed overnight at room temperature (Chaieb *et al.*, 2007). Slime producing bacteria appeared as black colonies, whereas non-slime producers remained non pigmented (Subashkumer *et al.*, 2006).

2.6. Quantitative adherence assay Biofilm production by Vibrio strains was determined using a semi-quantitative adherence assay on 96-well tissue culture plates, as described previously (Chaieb et 2007). Strains were grown in Trypticase Soy Broth supplemented with 1% (w/v) NaCl (TSB 1%, Pronadisa, Spain), following overnight incubation at 30°C, the optical density at 600 nm (OD 600) of the bacteria was measured. An overnight culture, grown in TSB 1% at 30°C, was diluted to 1:100 in TSB supplement with 2% (w/v) glucose. A total of 200 µl of cell suspensions was transferred in a U bottomed 96-well microtiter plate (Nunc, Roskilde, Denmark).

Each strain was tested in triplicate. Wells with sterile TSB alone were served as controls. The plates were incubated aerobically at 30°C for 24 h. The cultures were removed, and the microtiter wells were washed twice with phosphate-buffered saline (7 mM Na₂HPO₄, 3 mM

NaH2PO4 and 130 mM NaCl at pH 7.4) to remove non-adherent cells and dried in an inverted position. Adherent bacteria were fixed with 95% ethanol and stained with 100 µl of 1% crystal violet (Merck, France) for 5 min. The excess stain was rinsed and poured off and the wells were washed three times with 300 µl of sterile distilled water. The water was then cleared, and the microplates were air-dried. The optical density of each well was measured at 570 nm (OD 570) using an automated Multiskan reader (GIO. DE VITA E C, Rome, Italy).

The optical density (OD595nm) was measured spectrophotometrically. Bacteria were interpreted as (–) non- biofilm forming OD595 \leq 1, (+) weak biofilm forming 1 < OD595 \leq 2, (++) medium biofilm forming 2 < OD595 \leq 3, or (+++) strong biofilm forming OD595 > 3 (Snoussi *et al.*, 2009) Each essay was performed three times.

2.7. Data analysis and discriminatory power of the methods

To determine significant differences in the patterns, the reproducibility of results was evaluated by repetition of at least three independent RFLP, assays. The number and the size of fragments were evaluated by visual inspection and using Gel Pro 3.2 Analyzer software. Computed similarities among strains were estimated by means of the Jaccard's coefficient (SJ). Cluster analysis and dendrograms were obtained based on the unweighted average pair group method (UPGMA), using Multivariate Statistical Package, version 3.1.

The discriminatory power of this method was calculated by the application of Simpson numerical index of diversity (Hunter and Gaston, 1988). This index was used to compare the typing methods and to select the most discriminatory system for the molecular differentiation of isolates.

The discriminatory index (**D**) of each method was calculated using the standard

INSTM Bull. 2024, 49 7/20

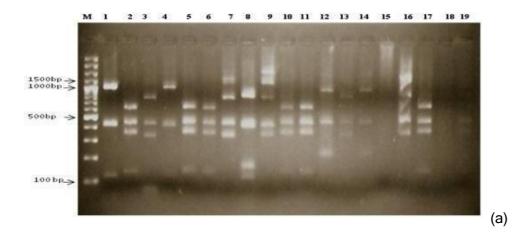
formula for this metric. This Discriminatory Power (**D**), as shown by Hunter and Gaston (1988) can be expressed by the formula of Simpson's index of diversity, which reads:

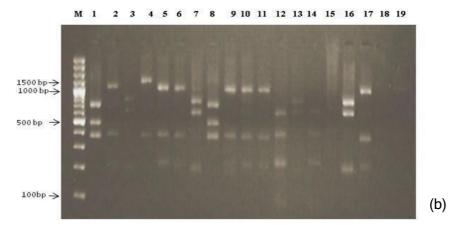
$$D = 1 - \frac{1}{N(N-1)} \sum_{j=1}^{S} n_j (n_j - 1)$$

In this equation, N is the total number of V. alginolyticus strains in the population used for the chemometric model, S is the total number of V. alginolyticus types involved in this model, and nj is the number of the strains belonging to the t type. A D value of > 0.9is required for a highly discriminatory typing method, with segregation results interpreted with confidence (Willemse-Erix et al., 2009). The discriminatory index of each method was calculated using the standard formula for this metric, where a value of 1 is highly discriminatory and a value of 0 is not discriminatory.

3. Results and Discussion

3.1. Biochemical and phenotypical identification


Twenty-six strains of *V. alginolyticus* were isolated from two aquaculture systems and their phenotypic and biochemical identification is based on some specific characters. Yellow colonies obtained from the modified TCBS agar are identified as Gram-negative motile fermentative rods, with positive, catalase and oxidase activities and susceptible to *Vibrio* static compounds O/129 (150 µg/disk). These


colonies could grow in peptone water prepared with 3%, 8% and 10% of NaCl, respectively.

3.2. Molecular identification and PCR-RFLP

Many controls were practiced in coastal aquaculture systems to avoid and to fight this pathogenic bacterium, due to its unknown diversity. The current study was performed to compare different methods and allow the detection of some similarities and differences among *V. alginolyticus* isolates. First, we confirmed the *V. alginolyticus* identity by specific PCR amplification as recommended in the research of Di Pinto *et al.*, (2005).

The PCR-RFLP was able to distinguish closely related V. alginolyticus strains, deducing allowing phylogenetic relationships investigating and their diversity in various ecosystems. In this study, the two enzymes Sdul and Fagl generated polymorphic banding patterns and produced different restriction profiles (Figure 2 a - b). Cluster analysis revealed the existence of 20 haplotypes among 26 strains investigated with different incidence showing the high heterogeneity of V. alginolyticus strains. This heterogeneity not only per the origin (fish aquaculture farms and bivalve aquaculture stations), but also within the same type of sample (Figure 3).

Figure 2. (a) Different profiles obtained by PCR-RFLP using the Sdul enzyme (Bsp1286I) on the different isolates of *V. alginolyticus*. (b). Different profiles obtained by PCR-RFLP using. the FaqI enzyme (BsmFI) on the different isolates of *V. alginolyticus*

M: 50-2000 bp DNA molecular size marker; Lanes: 1: CM4 (Conchylicole station-Menzel Jmil), 2: CM13 (Conchylicole station- Menzel Jmil), 3: AKh1(Aquaculture farm-Khenis), 4: AH4 (Aquaculture farm-Hergla), 5:CM2 (Conchylicole station-Menzel Jmil), 6: Akh5 (Aquaculture farm-Khenis), 7: CM7 (Conchylicole station-Menzel Jmil), 8: AH3 (Aquaculture farm-Hergla), 9: AH11 (Aquaculture farm-Hergla), 10:CM9 (Conchylicole station-Menzel Jmil), 11: Akh6 (Aquaculture farm-Khenis), 12: Akh3 (Aquaculture farm-Khenis), 13: CM1(Conchylicole station-Menzel Jmil), 14: AH2 (Aquaculture farm-Hergla), 15: AH6 (Aquaculture farm-Hergla), 16: CM8 (Conchylicole station-Menzel Jmil), 17: CM12 (Conchylicole station-Menzel Jmil), 18: Akh7 (Aquaculture farm-Khenis), 19: CM10(Conchylicole station-Menzel Jmil).

INSTM Bull. 2024, 49 9/20

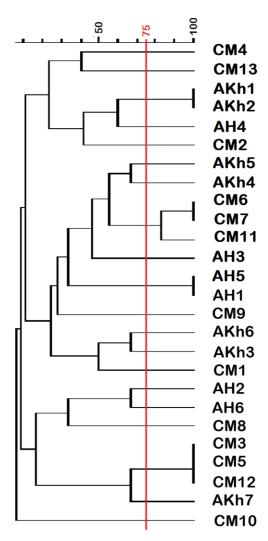


Figure 3. Clusters analyses of RFLP fingerprints showing the genotypic diversity of *V. alginolyticus* strains

Similar results were found by Hossain et al. (2014), who demonstrated that PCR-RFLP was more reliable than PCR-based methods. This approach was successfully used to identify Vibrio cholera non O1/non0139 and to differentiate among pathogenic Vibrio species and potentially be complementary methods to identify and characterize parahemolyticus strains by PCR-RFLP of V. parahemolyticus MAM-7 gene (Elola-Lopez et al., 2015). This method can be employed for accurate detection of Vibrio species including those closely related. Using the PCR-RFLP method, it is possible to recognize closely related V. alginolyticus strains, which enables us to deduce phylogenetic relationships and examine

their diversity in different ecosystems (Silvester et al., 2017). Whereas Bughe et al. (2020) showed that a significant distinction between *V. alginolyticus* and *V. parahaemlyticus* isolates could not be achieved using RFLP 16Sr RNA gene analysis, indicating the need for more sensitive methods. Or, that RFLP and the phylogeny cladogram should be considered in combination.

3.3. Antibiotic resistance and MAR index

Twenty antibiotics were tested on the 26 isolates of *V. alginolyticus*. A total of 70% of *V. alginolyticus* strains were resistant to 11 antibiotics, this resistance is presented by 15 different profiles (Table 1).

INSTM Bull. 2024, 49 10/20

Table 1. Results of resistance patterns, MAR index, biofilm formation on polystyrene 96-well plates and slime production on Congo Red Agar

Aquaculture systems	Origin	Strain s	Resistance patterns	MAR Index	Polystyren e DO ₅₉₅ ± DS	Estimation of biofilm formed	Phenotype of strains (CRA)
	Fish (Liver of S. aurata)	Akh 1	R2: AMP-CTX-C-IMI-K-S- SMX-DXT-KF-E-TC-CIP: (12)	0.60	4.350 ± 0.208	(+++)	Black
	Fish (Gill of S. aurata)	Akh 2	R9: AMP-CTX-C-FOS-CN- IMI-K-NA-SMX-TM-F-KF-E- TC-AK: (15)	0.75	6.512 ± 0.264	(+++)	Black
	Fish (S. aurata)	Akh 3	R5: AMP-CTX-K-NA-K-S-TM- DXT-F-KF-E-TC-CIP: (13)	0.65	4.350 ± 0.208	(+++)	Black
Khenis-Monastir	Fish (Juvenile of S. aurata)	Akh 4	R3: AMP-CTX-C-FOS-CN-K- TM-DXT-KF-CIP-AK: (11)	0.55	2.261 ± 0.116	(++)	Black
Aquaculture farm	Fish (S. aurata)		R14: AMP-CTX-FOS-CN-IMI- K-NA-SMX-TM-DXT-K-KF-E- TC-CIP: (15)	0.75	6.512 ± 0.264	(+++)	Black
	Fish (Juvenile of S. aurata)	Akh 6	R14: AMP-CTX-FOS-CN-IMI- K-NA-SMX-TM-DXT-K-KF-E- TC-CIP (15)	0.75	5.423 ± 0.245	(+++)	Black
	Fish (S. aurata)	Akh 7	R12: AMP-CTX-CN-IMI-K- DXT-F-KF-E-TC-CIP:(11)	0.55	1.801 ± 0.152	(+)	White
	M. edulis	CM 1	R4: AMP-CTX-C-FOS-CN- IMI-K-S-SMX-DXT:(10)	0.50	2.524 ± 0.148	(++)	White
	M. edulis	CM 2	R5: AMP-CTX-K-NA-K-S-TM- DXT-F-KF-E-TC-CIP:(13)	0.65	2.177 ± 0.009	(++)	Black
	M. edulis	CM 3	R3: AMP-CTX-C-FOS-CN-K- TM-DXT-KF-CIP-AK :(11)	0.55	2.122 ± 0.193	(++)	Black
	M. edulis	CM 4	R4: AMP-CTX-C-FOS-CN- IMI-K-S-SMX-DXT: (10)	0.50	1.661 ± 0.032	(+)	White
	M. edulis	CM 5	R3: AMP-CTX-C-FOS-CN-K- TM-DXT-KF-CIP-AK: (11)	0.55	1.454 ± 0.116	(+)	White
	M. edulis	CM 6	R11: AMP-CN-IMI-K-NA-S- TM-DXT-F-E-TC-AK: (12)	0.60	2.092 ± 0.032	(++)	Black
Menzel Jmil	M. edulis	CM 7	R10: AMP-CN-IMI-K-S-SMX- TM-DXT-F-E-TC-CIP- SXT:(13)	0.65	2.177 ± 0.009	(++)	Black
Shellfish Farm	M. edulis	CM 8	R8: AMP-FOS-IMI-K-TM- DXT-F-KF-E-TC-CIP-SXT: (12)	0.60	2.501 ± 0.174	(++)	Black
	M. edulis	CM 9	R10: AMP-CN-IMI-K-S-SMX- TM-DXT-F-E-TC-CIP- SXT:(13)	0.65	2.544 ± 0.071	(++)	Black
	C. gigas	CM 10	R2: AMP-CTX-C-IMI-K-S- SMX-DXT-KF-E-TC-CIP: (12)	0.60	2.261 ± 0.116	(++)	Black
	C. gigas	CM 11	R8: AMP-FOS-IMI-K-TM- DXT-F-KF-E-TC-CIP-SXT: (12)	0.60	2.223 ± 0.089	(++)	Black
	C. gigas	CM 12	R1: AMP-CTX-FOS-K-NOR- S-DXT-F-E-SXT-AK: (11)	0.55	2.231 ± 0.096	(++)	White
	C. gigas	CM 13	R4: AMP-CTX-C-FOS-CN- IMI-K-S-SMX-DXT: (10)	0.50	1.553 ± 0.164	(+)	White
	Fish (D. labrax)	AH 1	R6: AMP-CTX-FOS-IMI-K- NA-SMX-TM-DXT-TC-CIP: (11)	0.55	2.230 ± 0.089	(++)	White
	Fish (D. labrax)	AH 2	R15: AMP-CTX-FOS-CN-IMI- K-NA-SMX-TM-DXT-K-KF-E- TC-CIP- S: (16)	0.80	6.512 ± 0.264	(+++)	Black
Hergla	Fish (Kidney of D. labrax)	AH 3	R13: AMP-C-FOS-IMI-K-NA- TM-DXT-F-KF-E-TC-CIP- SXT: (14)	0.70	5.279 ± 0.264	(+++)	Black
Aquaculture farm	Fish (Kidney of D. labrax)	AH 4	R7: CTX-CN-IMI-K-NA-DXT- F-KF-E-TC-CIP: (11)	0.55	2.524 ± 0.148	(++)	White
	Fish (D. labrax)	AH 5	R9: AMP-CTX-C-FOS-CN- IMI-K-NA-SMX-TM-F-KF-E- TC-AK: (15)	0.75	5.279 ± 0.264	(+++)	Black
	Fish (D. labrax)	AH 6	R15: AMP-CTX-FOS-CN-IMI- K-NA-SMX-TM-DXT-K-KF-E- TC-CIP- S: (16)	0.80	6.654 ± 0.128	(+++)	Black

Antibiotic used:

AMP Ampicillin (10 lg), CTX Cefotaxim (30 lg), C Chloramphenicol (30 lg), FOS Fosfomycin (200 lg), CN Gentamycin (10 lg), IMI Imipenem (10 lg), K Kanamycin (30 lg), NA Nalidixic Acid (30 lg), NOR Norfloxacin (10 lg), S Streptomycin (10 lg), SMX Sulfamethoxazole (50 lg), TM Trimethoprime (5 lg), DXT Doxycycline (30 lg), F Nitrofurantoine (300 lg), KF Cephalothin (30 lg), E Erythromycin (15 lg), TC Ticarcillin (75 lg), CIP Ciprofloxacin (5 lg), SXT Co-Trimoxazole Trimethoprime+ Sulfamethoxazole (25 lg), AK Amikacin (30 lg)

Interpretation of biofilm formed on polystyrene surface:

• (-): Non biofilm forming, OD595 ≤ 1

• (+): Weak biofilm forming, 1 < OD595≤ 2

• (++): Medium biofilm forming, $2 < OD595 \le 3$

(+++): Strong biofilm forming, OD595 > 3

(CRA): Congo Red Agar

Among the antibiotics tested, ampicillin had the highest resistance rate with 92.3%, erythromycin coming in second with 80.8% resistance, cefotaxim third with 77% resistance, kanamycin fourth with 69.2% resistance, doxycyclin fifth with 65.3% resistance, trimethoprim sixth with 57.6% resistance, and gentamycin seventh with 42.3% resistance. Whereas the results recorded by Abdel-Aziz et al. (2013) and Sanhoury et al. (2021) found that V. alginolyticus were resistant to ampicillin, amoxycillin and lincomycin, present a moderate sensitivity against Cotrimoxazole trimethoprime+ sulfamethoxazole and erythromycin and were sensitive to ciprofloxacin, chloramphenicol, gentamicin, enrofloxacin, oxytetracycline, tetracycline. Furthermore, Shahimi et al. (2021) reported that a total of 45.8% of V. alginolyticus isolates resistant to one or more antibiotics. Moreover, the research of Shahimi et al. (2021) showed that a total of 45.8% of the V. alginolyticus isolates were resistant to one or more antibiotics. Their study revealed that the greatest resistance was to penicillin, followed by ampicillin, vancomycin and erythromycin.

Kang *et al.* (2016) found identical outcomes, stating that all 15 oyster *V. alginolyticus* isolates in Korea were resistant to ampicillin, vancomycin, and to cephalothin. This antibiotic resistance is often determined by genetic information of plasmid origin in *Vibrio* spp.

(Muhammed *et al.*, 2019). Other researchers have reported high levels of antibiotic resistance for *V. alginolyticus* strains by using the minimum inhibitory assay to some antibiotics (Hernández-Robles *et al.*, 2016; Lajnef *et al.*, 2012).

The emergence resistance observed in our work could be linked to the misuse and overuse of antibiotic in aquaculture systems for prophylactic and therapeutic purposes. Additionally, excessive use of antimicrobials could result in widespread presence of multidrugresistant bacteria in fish, shellfish, and the surrounding water (Snoussi et al., 2016). Moreover, the studies of Suresh et al. (2018) showed that out of 15 Vibrio isolates, highest resistance was recorded against ampicillin followed by gentamicin, ceftazidime. amikacin. penicillin, tetracycline and streptomycin and out these 15 isolates, 5 isolates were found positive for ESBLs i.e. 2 (33.33%), 1 (50%), 1 (25%) and 1 (33.33%) were from V. parahaemolyticus, V. vulnificus, V. alginolyticus and V. cholerae respectively by both phenotypic and molecular methods.

In our investigation, it was found that the majority of the isolates were resistant to multiple antibiotics (MAR) with fifteen different profiles. Seven isolates (27%) were resistant to eleven antibiotics, five (19.2%) to twelve antibiotics and four (15.4%) to both thirteen and fifteen antibiotics, respectively. The multiple antibiotic resistance (MAR) index was

ranged from 0.55 to 0.80 for the isolates from the aquaculture farm of Hergla. For the isolates from aquaculture farm of Khenis and from shellfish farm of Menzel Jmil, the MAR index was ranged from 0.55 to 0.75 and from 0.50 to 0.65 respectively (Table 1).

In fact, the isolates from the two aquaculture farm of Hergla and Khenis present the higher value which confirms the overuse of antimicrobials in the aquaculture settings. Thus, "in appropriate used of antibiotic agents provide a favorable condition for resistant bacteria to develop". These findings were similar to those reported by Lajnef et al. (2012) and Manage (2018). Our MAR index value was higher than 0.2, could be originated from high-risk sources of antibiotic contamination where antibiotics are often used, which is in accordance with the studies of Kurdi Al-Dulaimi et al. (2019) and Wei et al., (2011).

Ottaviani et al. (2013) demonstrated in their research that high levels of multiple-antibiotic resistance property could be stated by the furthered chance to exchange genetic resistance determinants spotted on the plasmids among microorganisms, due to the extensive use of antibiotics in fishery and for the treatment of different kinds of infections.

It was demonstrated that the low MAR range (0.15) indicated low risk of contamination, whereas the high MAR range (above 0.25) indicated high risk of contamination (Chitanand et al., 2010). In this study, the higher MAR index values were 0.80, 0.75, and 0.65 (Table 1), indicating the high contamination ability of V. alginolyticus isolates; this agrees with the results obtained in other studies (Ahmed et al., 2018; Ashrafudoulla et al., 2019; Kang et al., 2017). Furthermore, Nguyen et al. (2014) showed that antibiotic-resistant microbes (ARMs) have become a major concern for public health, and many isolates from seafood have demonstrated а higher degree resistance against a wide range of antibiotics.

3.4. Determination of slime production

Slime production was assessed by culturing the investigated strains on Congo Red agar (CRA) plates. Among the 26 Vibrio alginolyticus strains tested, 18 strains (69.2%) were a slime-producer developing almost black colonies whereas the remaining 8 strains are considered as non-producers since they showed white colonies on CRA plates (Figure 4).

Figure 4. Different morphotypes described on Congo Red Agar showing black and white colonies

These results were nearly similar to those recorded by Ben Abdallah *et al.* (2009) and Abdulhakeem *et al.* (2023). In fact, the slime is used by bacteria as a protective mechanism against external environments and is measured as an important virulence factor in some pathogenic bacteria,

including *Vibrio* and *Aeromonas* species, and it could be an indicator of a high-risk contamination (Secchi *et al.*, 2002). The uses of antibiotics often fail to eradicate the pathogen bacteria because of the aggregation strategy that they have in aquaculture. Indeed, after adhesion to host

fish, pathogen bacteria aggregate, produce an extracellular exopolysaccharide (EPS) that form a matrix and serves for biofilm formation and invading (Ben Hamed *et al.*, 2019; Limoli *et al.*, 2015). Furthermore, Slime molecules play a significant role in the initial stages of biofilm development (Rajkumar *et al.*, 2016).

All strains of *V. alginolyticus* showed swarming motility after inducing the expression of the lateral flagella by growth on solid medium. Lateral flagella allow microorganisms to travel on highly dense environments (Hernández-Robles *et al.*, 2016). Therefore, colonization by this microorganism when present on viscous tissues will be favored (Chen *et al.*, 2017).

3.5. Quantitative Estimation of Biofilm Formation by Tested Bacteria on Abiotic Surfaces

On a polystyrene 96-well microtiter plate (U-bottom), 9 strains out 26 (34.61%) were strong biofilm forming with an optical density of about OD595 > 3 (Table 1). These strains were recovered from fish farms were S. aurata and D. labrax were reared including 5 strains and 4 strains from Khenis and Hergla respectively. In addition, 13 strains (50%) were medium biofilm forming with an optical density of about 2 < OD595≤ 3; most of which were recovered from shellfish station of Menzel Jmil (M. edulis and C. gigas). Only four strains (15.38%) weakly adhered to polystyrene and formed a weak biofilm (1 < OD595 ≤ 2) on the polystyrene surface (96well plate). This study showed that almost the tested bacteria adhered to polystyrene, 84.61% were moderately and strongly adherent which is in accordance with the research of Ben Hamed et al. (2019). These authors showed in their research that all the tested bacteria adhered to polystyrene, 90% were moderately and strongly adherent. In aquaculture, Ben Hamed et al. (2019). suggested that it should be important to monitor the biofilm formation in the tank wall or any other

abiotic material other than glass or polystyrene especially without rough surfaces. The reason for this is that surface roughness influences bacteria adhesion (Lorite *et al.*, 2011; Dussud *et al.*, 2018) and harbored 25 times more bacteria. (Quirynen *et al.*, 1993).

Our strains were able to form biofilms on the polystyrene surface (96-well plate) to different degrees. Similar studies showed the capacity of the isolates to form biofilms on different biotic and abiotic surfaces including polystyrene, glass, and plastic (Abdulhakeem et al., 2023 and Odeymi et al., 2017). The moderate and strong adhesion observed in this study, showed a high antibiotic resistance and were slime-producer developing almost black colonies which could show the relationship between biofilm formation and antibiotic resistance Similar results were observed in the work of Lorite et al. (2011).

Such studies have shown the close relationship between biofilm and antibiotic resistance (Song et al., 2017). These authors showed that biofilm cell of *V. parahaemolyticus* has great resistant ability to antibiotics and disinfectants than planktonic cells. Abilities of bacteria for biofilm formation increase their resistance to antibiotic, also increase antibiotic usage and concentrations to overcome antibiotic resistance makes the condition to get worse (Sanhoury *et al.*, 2021).

4. Conclusion

The results of this study demonstrated that the V. alginolyticus strains investigated had a high multiple antibiotic resistance (MAR) index values and were able to form biofilms on different biotic and abiotic surfaces. This could allow them to survive longer in these environments and increase their resistance to antibiotic which could make the situation worse. In front of this situation other alternatives to antibiotics should be used such as effective probiotics, antibacterial organic materials, vaccines. Furthermore, the monitoring and

INSTM Bull. 2024, 49 14/20

management of antibiotic patterns, the continuous study of genetic diversity of *Vibrio alginolyticus* and avoid polystyrene as abiotic material in aquaculture are important for treatment to increase fish and seafood safety.

References

- Abdel-Aziz, M., Eissa, A.E., Hanna, M. & Okada, M.A. (2019). Identifying some pathogenic Vibrio / Photobacterium species during mass mortalities of cultured gilthead sea bream (Sparus aurata) and European sea bass (Dicentrarchus labrax) from some Egyptian coastal provinces. International Journal of Veterinary Science and Medicine, 1(2), 87-95. https://doi.org/10.1016/j.ijvsm.2013.10.004
- 2. Abdulhakeem, M.A., Alreshidi, M., Bardakci, F., Hamadou, W.S., De Feo, V., Noumi, E. & Snoussi, M. (2023). Molecular Identification of Bacteria Isolated from Marketed *Sparus aurata* and *Penaeus indicus* Sea Products: Antibiotic Resistance Profiling and Evaluation of Biofilm Formation. *Life*, 13(2), 548. https://doi.org/10.3390/life13020548
- Abouelmaatti, R.R., Algammal, A.M., Li, X., MA, J., Abdelnaby, E.A. & Elfeil, W.M. (2013). Experimental immunology cloning and analysis of Nile tilapia Toll-like receptors type-3 mRNA. Central European Journal of Immunology, 38(3), 277-282. https://doi.org/10.5114/ceji.2013.3774
- 4. Ahmed, H.A., El Bayomi, R.M., Hussein, M.A., Khedr, M.H., Abo Remela, E.M. & El-Ashram, A.M. (2018). Molecular characterization, antibiotic resistance pattern and biofilm formation of *Vibrio parahaemolyticus* and *V. cholerae* isolated from crustaceans and humans. *International*

Journal of Food Microbiology, 274, 31–37.

- https://doi.org/10.1016/j.ijfoodmicro.20 18.03.013
- Al-Dulaimi, M.M.K, Abd Mutalib, S., Abd Ghani, M.; Mohd Zaini, N.A., Ariffin, A.A. (2019). Multiple antibiotic resistance (MAR), plasmid profiles and DNA polymorphisms among *Vibrio vulnificus* isolates. *Antibiotics*, 8(2),68. https://doi.org/10.3390/antibiotics80200068
- Alsina, M., & Blanch, A.R. (1994). Improvement and update of a set of keys for biochemical identification of Vibrio species. Journal of Applied Bacteriology, 77(6), 719–721. https://doi.org/10.1111/j.1365-2672.1994.tb02824.x
- Ashrafudoulla, M., Mizan, M.F.R., Park, H., Byuan, K.H., Lee, N., Park, S.H. & DoHa, S. (2019). Genetic relationship, virulence factors, drug resistance profile and biofilm formation ability of *Vibrio parahaemolyticus* isolated from mussel. *Frontiers in Microbiology*,10,513. https://doi.org/10.3389/fmicb.2019.005
- 8. Bakhrouf, A., Ben Ouada, H. & Oueslati, R. (1995).Essai de traitement des vibrioses du loup Dicentrarchus labrax dans une zone de pisciculture, à Monastir, Tunisie. Marine Life. 5(2), 47-54. https://www.marinelife-revue.fr/wpcontent/uploads/2019/06/bakhrouf et al-1995-marlife.pdf
- Ben Abdallah, F., Chaieb, K., Zmantar, T., Kallel, H. & Bakhrouf, A. (2009). Adherence assays and slime production of Vibrio alginolyticus and V. parahaemolyticus. Brazilian Journal of Microbiology, 40, 394-398. https://doi.org/10.1590/S1517-83822009000200033
- 10. Ben Abdallah, F., Ellafi, A., Lagha, R., Bakhrouf, A., Namane, A., Rousselle

INSTM Bull. 2024, 49 15/20

J.C., Lenormand, P. & Kallel, H. Identification (2010).of outer membrane proteins of Vibrio parahaemolyticus and Vibrio alginolyticus altered in response to yirradiation or long-term starvation. Research in Microbiology, 161 (10), 869-875.

https://doi.org/10.1016/J.RESMIC.201 0.10.009

- 11. Ben Hamed, S., Guardiola, F., Morcillo, P., Gonzalez-Parraga, P., Tavares Ranzani-Paiva, M.J. & Esteban, M.A. Adhesion of pathogenic (2019).bacteria to polystyrene, skin and gut gilthead seabream, mucus of capacity and antibiotics infectious susceptibility. Boletim do Instituto de Pesca. 45 (4),e490. https://doi.org/10.20950/1678-2305.2019.45.4.490
- Ben Kahla-Nakbi, A., Chaieb, K. & Bakhrouf, A. (2009). Investigation of several virulence properties among Vibrio alginolyticus strains isolated from diseased cultured fish in Tunisia. Diseases of Aquatic Organisms, 86(1), 21-28.

https://doi.org/10.3354/dao02091

- Brooun, A., Liu, S. & Lewis, K. (2000).
 A Dose-Response Study of Antibiotic Resistance in Pseudomonas aeruginosa Biofilms. Antimicrobial Agents and Chemotherapy, 44(3), 640-646.
 - https://doi.org/10.1128/aac.44.3.640-646.2000
- Bughe, R.N., Oben, B.O., Nji, A.M., Chedjou, J.P.K., Mbange, A.E., Ali, I.M., Oben, P.M. & Mbacham, W.F. (2020). Occurrence and antibiotics susceptibility of Vibrio sp. from Penaeid shrimps from Kribi Coastal Water, Cameroon. International Journal of Advanced Research in Biological Sciences, 7(7), 96-111. https://ijarbs.com/pdfcopy/2020/july20 20/ijarbs12.pdf

- Chaieb, K., Chehab, O., Zmantar, T., Rouabhia, M., Mahdouani, K. & Bakhrouf, A. (2007). In vitro effect of pH and ethanol on biofilm formation by clinical ica-positive Staphylococcus epidermidis strains. Annals of Microbiology, 57 (3), 431-437. https://doi.org/10.1007/BF03175085
- Chen, M., Zhao, Z., Yang, J., Peng, K., Baker, M.A., Bai, F. & Lo, C.J. (2017). Length-dependent flagellar growth of Vibrio alginolyticus revealed by real time fluorescent imaging. eLife, 6, e22140.

https://doi.org/10.7554/eLife.22140

- Chitanand, M., Kadam, T., Gyananath, G., Totewad, N. & Balhal, D. (2010). Multiple antibiotic resistance indexing of coliforms to identify high risk contamination sites in aquatic environment. *Indian Journal of Microbiology*, 50(2), 216–220. https://doi.org/10.1007/s12088-010-0042-9
- 18. Clinical and Laboratory Standards Institute (2008). Performance standards for antimicrobial susceptibility testing; eighteenth informational supplement, (Document M100-S18; 28, no. 1). CLSI, Wayne.
- Deng, Y., Xu, L., Chen, H., Liu, S., Guo, Z., Cheng, C., Ma, H. & Feng, J. (2020). Prevalence, virulence genes, and antimicrobial resistance of *Vibrio* species isolated from diseased marine fish in South China. *Scientific Reports*, 10(1), 14329. https://doi.org/10.1038/s41598-020-71288-0
- Di Pinto, A., Ciccarese, G., Tantillo, G., Catalano, D. & Forte, V.T. (2005). A collagenase-targeted Multiplex PCR assay for identification of Vibrio alginolyticus, Vibrio cholerae, and Vibrio parahaemolyticus. Journal of Food Protection, 68(1), 150-153. https://doi.org/10.4315/0362-028X-68.1.150

- 21. Dussud, C., Meistertzheim, A. L., Conan, P., Pujo-Pay, M., George, M., Fabre, P., ... & Ghiglione, J.F. (2018). Evidence of niche partitioning among bacteria living on plastics, organic particles and surrounding seawaters. *Environmental Pollution*, 236, 807–816. https://doi.org/10.1016/j.envpol.2017.12.027
- Elexson, N., Afsah-Hejri, L., Rukayadi, Y., Soopna, P., Lee, H., Zainazor, T. T. & Son, R. (2014). Effect of detergents as antibacterial agents on biofilm of antibiotics-resistant Vibrio parahaemolyticus isolates. Food Control, 35(1), 378–385. https://doi.org/10.1016/j.foodcont.2013
 .07.020
- 23. Elola-López, A., Esquivel, MJ., Muñoz Bergmann, C.A., Beltrán, S., Osorio Abarzúa, C.G. & Trombert, A.N. (2015). PCR Restriction Fragment Length Polymorphism Analyses of *V. Parahaemolyticus* MAM-7 Virulence Gene in Clinical and Environmental Strains. *Electronic Journal of Biology*, 11(3), 119-125.
 - https://repositorio.uchile.cl/handle/225 0/145118
- 24. Felix, F., Nugroho, T., Silalahi, S. & Octavia, Y. (2011).Molecular characteristics of Vibrio sp causing Black Tiger Prawn (Penaeus monodon) Disease in Sumatra and Java shrimp ponds by 16S rDNA Sequencing. Journal of Agricultural Technology, 679-694. 7(3), http://www.ijataatsea.com/pdf/May_v7_n3_11/13%2 0IJAT2011-02%20FJR.pdf
- 25. Fluharty, D.M. & Packard, W.L. (1967). Differentiation of Gram- positive and Gram-negative bacteria without staining. *American Journal of Clinical Pathology*, 1, 31–35.
- Fraiha, R.O, Pereira, A.P.R., Brito, E.C.A., Parente, A. F.A., Perdomo, R.T., Macedo, M.L.R. & Weber, S.S. (2019). Stress conditions in the host

- induce persister cells and influence biofilm formation by Staphylococcus epidermidis RP62A. Revista da Sociedade Brasileira de Medicina Tropical, 52, e20180001. https://doi.org/10.1590/0037-8682-0001-2018
- Freeman, D.J., Falkiner, F.R. & Keane, DC.T. (1989). New method for detecting slime production by coagulase negative staphylococci. *Journal of Clinical Pathology*, 42(8), 872–874.

https://doi.org/10.1136/jcp.42.8.872

- Fu, K., Li, J., Wang, Y., Liu, J., Yan, H.,Shi, L. & Zhou, L. (2016) An innovative method for rapid identification and detection of Vibrio alginolyticus in different infection models. Frontiers in Microbiology, 7(651). 1-10 http://dx.doi.org/10.3389/fmicb.2016.0
- 29. Galhano, B.S.P., Ferrari, R.G., Panzenhagen, P., De Jesus, A.C.S. & Conte-junior, C.A. (2021).Resistance Antimicrobial Gene Detection Methods for Bacteria in Animal-Based Foods: A Brief Review Highlights Advantages. and Microorganisms, 9(5), 923 https://doi.org/10.3390/microorganism s90<u>50923</u>
- 30. Hernández-Robles, M. F., Álvarez-Contreras, A. K., Juárez-García, P., Natividad-Bonifacio, Curiell., Quesada, E., Vázquez-Salinas, C. & Quiñones-Ramírez, E. I. (2016)Virulence factors and antimicrobial resistance in environmental strains of Vibrio alginolyticus. International Microbiology, 191-198. 19(4), https://doi.org/10.2436/20.1501.01.277
- 31. Hossain, M. T, Kim Y.R. & Kong, I. S. (2014). PCR-Restriction fragment length polymorphism analysis using groEL gene to differentiate pathogenic *Vibrio* species. *Diagnostic Microbiology and Infectious Disease*, 78(1),9-11.

INSTM Bull. 2024, 49 17/20

- https://doi.org/10.1016/j.diagmicrobio.2 013.10.005
- 32. Hunter, P.R. & Gaston, M. A. (1988). Numerical index of the discriminatory ability of typing systems: an application of Simpson's index of diversity. *Journal of Clinical Microbiology*, 26, 2465-2466. https://doi.org/10.1128/jcm.26.11.2465
- 33. Jacobs Slifka, K.M., Newton, A.E. & Mahon, B.E. (2017). Vibrio alginolyticus infections in the USA,1988-2012. Epidemiology and Infection, 145(7), 1491–1499. https://doi.org/10.1017/S0950268817000140
- 34. Jayaraman, S.K., Manoharan, M., Ilanchezian, S., Sekher, R. & Sathyamurthy, P. (2008). Plasmid analysis and prevalence of Multidrug resistant Staphylococcus aureus reservoirs in Chennai city, India. *The Internet Journal of Microbiology*, 7(1), 1-6. http://ispub.com/IJMB/7/1/4376
- 35. Kang, C.H., Shin, Y., Kim, W., Kim, Y., Song, K., Oh, E.G, Kim, S., Yu, H. & So, J.S. (2016). Prevalence and antimicrobial susceptibility of *Vibrio parahaemolyticus* isolated from oysters in Korea. *Environmental Science and Pollution Research*, 23, 918–926. https://doi.org/10.1007/s11356-015-5650-9
- Kang, C. H., Shin, Y., Jang, S., Yu, H., Kim, S., An, S., Park, K. & So, J.S. (2017). Characterization of *Vibrio parahaemolyticus* isolated from oysters in Korea: resistance to various antibiotics and prevalence of virulence genes. *Marine Pollution Bulletin*, 118(1-2), 261-266. https://doi.org/10.1016/j.marpolbul.2017.02.070
- 37. Kim, D.H. & Austin, B. (2006). Innate immune responses in rainbow trout (*Oncorhynchus myki*ss, Walbaum)

- induced by probiotics. Fish and Shellfish Immunology, 21(5), 513-524. https://doi.org/10.1016/j.fsi.2006.02.00
- 38. Krieg, N.R. & Holt, J.G. (1984). Bergey's Manual of Systematic Bacteriology. v.1, Williams and Wilkins. Baltimore, 964pp
- 39. Kurdi Al-Dulaimi, M., Abd Mutalib, S., Abd Ghani, M., Mohd Zaini, N.A. & Ariffin, A.A. (2019). Multiple Antibiotic Resistance (MAR), Plasmid Profiles, and DNA Polymorphisms among Vibrio vulnificus Isolates. Antibiotics (Basel),8(2),68. https://doi.org/10.3390/antibiotics8020068
- Lajnef, R., Snoussi, M., Balboa, S., Bastardo, A., Laabidi, H., Chatti, A., Hassen, A. & Romalde, J.L. (2012). Molecular typing of *V. alginolyticus* strains isolated from Tunisian marine biotopes by two PCR-based methods (ERIC and REP). *African Journal of Microbiology Research*, 6(22), 4647-4654.

https://doi.org/10.5897/AJMR11.960

- 41. Limoli, D.H., Jones, C.J. & Wozniak, D.J. (2015). Bacterial extracellular polysaccharides in biofilm formation and function. *Microbiology Spectrum*, 3(3).
 - https://doi.org/10.1128/microbiolspec.m b-0011-2014
- Lorite, G.S., Rodrigues, C.M., De Souza, A.A., Kranz, C., Mizaikoff, B., & Cotta, M.A. (2011). The role of conditioning film formation and surface chemical changes on *Xylella fastidiosa* adhesion and biofilm evolution. *Journal of Colloid and Interface Science*, 359(1), 289–295. https://doi.org/10.1016/j.jcis.2011.03.0
- 43. Manage, P.M. (2018). Heavy use of antibiotics in aquaculture: Emerging human and animal health problems A review. Sri Lanka *Journal of Aquatic Sciences*, 23(1), 13-27.

https://doi.org/10.4038/sljas.v23i1.754

- 44. Marhual, N.P., Das, B.K., Sadique, M., Swain, A.K., Mishra, B.K., Maitiand, N.K. & Eknath, A.E. (2010). Molecular identification and typing of *Vibrio alginolyticus* and *Vibrio parahaemolyticus* strains isolated from black tiger shrimp *Penaeus monodon. Journal of Aquaculture in the Tropics*, 25 (1-4), 25-36.
- 45. Mechri, B., Monastiri, A., Medhioub, A., Medhioub, M.N. & Aouni, M. (2017). Molecular characterization and phylogenetic analysis of high pathogenic *Vibrio alginolyticus* strains isolated during mortality outbreaks in cultured Ruditapes decussatus juvenile. *Microbial Pathogenesis*, 111, 487-496.
 - https://doi.org/10.1016/j.micpath.2017. 09.020
- 46. Nguyen, H.N.K.; Van, T.T.H.; Nguyen, H.T.; Smooker, P.M.; Shimeta, J. & Coloe, P.J. (2014).Molecular characterization of antibiotic resistance in Pseudomonas and Aeromonas isolates from catfish of the Mekong Delta, Vietnam. Veterinary Microbiology, 171(3-4), 397-405. https://doi.org/10.1016/j.vetmic.2014. 0 1.028
- 47. Odeyemi, O.A. & Ahmad, A. (2017). Population dynamics, antibiotics resistance and biofilm formation of Aeromonas and Vibrio species isolated from aquatic sources in Northern Malaysia. Microbial 178-185. Pathogenesis, 103, https://doi.org/10.1016/j.micpath.2017 . 01.007
- 48. Ottaviani, D., Bacchiocchi, I., Masini, L., Leoni, F., Carraturo, A., Giammarioli, M. & Sbaraglia, G. (2001). Antimicrobial susceptibility of potentially pathogenic halophilic vibrios isolated from sea food. *International Journal of Antimicrobial Agents*, 18(2), 135-140.

https://doi.org/10.1016/S0924-8579(01)00358-2

- Ottaviani, D., Leoni, F., Talevi, G., Masini, L., Santarelli, S., Rocchegiani, E., Susini, F., Montagna, C., Monno, R., D'Annibale, L. & Pazzani, C. (2013). Extensive investigation of antimicrobial resistance in *Vibrio parahaemolyticus* from shellfish and clinical sources, Italy. *International Journal* of *Antimicrobial Agents.*, 42(2), 191–193.
 - https://doi.org/10.1016/j.ijantimicag.20 13.05.003
- 50. Quirynen, M., Van Der Mei, H.C., Bollen, C.M., Schotte, A., Marechal, M., Doornbusch, G.I., Naert, I., Busscher, H.J. & Van Steenberghe, D. (1993). An in vivo study of the influence of the surface roughness of implants on the microbiology of supra- and subgingival plaque. *Journal of Dental Research*, 72(9), 1304-1309.
 - https://doi.org/10.1177/002203459307 20090801
- Rajkumar, H., Devaki, R. & Kandi, V. (2016). Evaluation of different phenotypic techniques for the detection of slime produced by bacteria isolated from clinical specimens. *Cureus*, 8(2), e505. https://doi.org/10.7759/cureus.505
- 52. Rogers, S.A., Huigens, R.W., Cavanagh, J. & Melander, C. (2010). Synergistic effects between conventional antibiotics and 2-Aminoimidazole-Derived antibiofilm agents. Antimicrobial Agents and Chemotherapy., 54(5), 2112–2118. https://doi.org/10.1128/AAC.01418-09
- 53. Sanhoury, F.A., Khalil, S., & Selim, A.S.A. (2021). Correlation between Biofilm formation and the antibiotic resistance in some pathogenic bacteria isolated from culture Shrimp. Alexandria Journal of Veterinary Sciences, 69(1), 12-19. https://doi.org/10.5455/ajvs.37153
- 54. Sarter, S., Nguyen, HNK., Hung, L.T, Lazard, J. & Montet, D. (2007).

INSTM Bull. 2024, 49 19/20

- Antibiotic resistance in gram-negative bacteria isolated from farmed catfish. *Food control*, 18(11), 1391-1396. https://doi.org/10.1016/j.foodcont.200 6.10.003
- 55. Sechi, L., Deriu, A., Falchi, M., Fadda, G. & Zanetti, S. (2002). Distribution of virulence genes in *Aeromonas* spp. isolated from Sardinian waters and from patients with diarrhea. *Journal of Applied Microbiology*, 92(2), 221–227. https://doi.org/10.1046/j.1365-2672.2002.01522.x
- 56. Shahimi, S., Elias, A., Abd Mutalib, S., Salami, M., Fauzi, F., Mohd Zaini, N., Abd Ghani, M. & Azuhairi, A. (2021). Antibiotic resistance and determination of resistant genes among cockle (Anadara granosa) isolates of Vibrio alginolyticus. Environmental Science and Pollution Research, 28, 44002–44013.
 - https://doi.org/10.1007/s11356-021-13665-4
- 57. Shaikh, S., Fatima, J., Shakil, S., Rizvi, S.M.D. & Kamal, M.A. (2015). Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi Journal of Biological Sciences, 22(1), 90-101. https://doi.org/10.1016/j.sjbs.2014.08.0
- 58. Silvester, R., Alexander, D., Antony, C. A. & Hatha, M. (2017). GroEl PCR-RFLP an efficient tool to discriminate closely related pathogenic *Vibrio* species. *Microbial Pathogenesis*, 105, 196-200. https://doi.org/10.1016/j.micpath.2017.02.029
- Snoussi, M., Noumi, E., Hajlaoui, H., Usai, D., Sechi, L.A., Zanetti, S. & Bakhrouf, A. (2009). High potential of adhesion to abiotic and biotic materials in fish aquaculture facility by Vibrio alginolyticus strains. Journal of Applied Microbiology, 106(5), 1591-1599.

https://doi.org/10.1111/j.1365-2672.2008.04126.x

- 60. Snoussi, M., Trabelsi, N., Ben Taleb, S., Dehmeni, A., Flamini, G. & De Feo, V. (2016). Laurus nobilis, Zingiber officinale and Anethum graveolens essential oils: Composition, antioxidant and antibacterial activities against bacteria isolated from fish and shellfish. Molecules, 21(10), 1414. https://doi.org/10.3390/molecules2110 1414
- Song, X., Ma, Y., Fu, J., Zhao, A., Guo, Z., Malakar, P.K., Pani Y. & Zhao, Y. (2017). Effect of temperature on pathogenic and non-pathogenic Vibrio parahaemolyticus biofilm formation. Food Control, 73 (Part B), 485-491. https://doi.org/10.1016/j.foodcont.2016.08.041
- 62. Suresh, Y., Subhashini, N., Bindu Kiranmayi, Ch., Srinivas, Prasastha Ram, V., Chaitanya, G., Swathi Vimala, B. & Srinivasa Rao, T. (2018).Isolation, molecular characterization and antimicrobial resistance patterns of four different Vibrio species isolated from freshwater fishes. International Journal of Current Microbiology and Applied Sciences, 3080-3088. https://doi.org/10.20546/ijcmas.2018.7 07.359
- Tang, H., Cao, T., Liang, X., Wang, A., Salley, S.O., McAllister 2nd, J. & Ng, K.Y.S. (2009). Influence of silicone surface roughness and hydrophobicity on adhesion and colonization of Staphylococcus epidermidis. Journal of Biomedical Materials Research., Part A, 88(2), 454-463. http://dx.doi.org/10.1002/jbm.a.31788.pmid:18306290
- 64. Thompson, F.L., Iida, T. & Swings, J. (2004). Biodiversity of *Vibrios*. *Microbiology and Molecular Biology Reviews*, 68(3), 403-431. https://doi.org/10.1128/MMBR.68.3.40 3-431.2004

INSTM Bull. 2024, 49 20/20

65. Urakawa, H., Kita-Tsukamoto, K., & Ohwada, K. (1997).16S rDNA PCR/RFLP Genotyping using (restriction fragment length polymorphism) analysis among the Vibrionaceae **FEMS** family Microbiology Letters, 152(1), 125-132. https://doi.org/10.1111/j.1574-6968.1997.tb10418.x

66. Wei, R., Ge, F., Huang, S., Chen, M. & Wang, R. (2011). Occurrence of veterinary antibiotics in animal wastewater and surface water around farms in Jiangsu Province, China. Chemosphere, 82(10), 1408-1414. https://doi.org/10.1016/j.chemosphere. 2010.11.067

- 67. Willemse-Erix, D.F.M., Scholtes-Timmerman, M.J., Jachtenberg, J.W., Van Leeuwen, W.B., Horst Kreft, D., Bakker Schut, T.C., Deurenberg, R.H., et al. (2009). Optical fingerprinting in bacterial epidemiology: Raman spectroscopy as a real-time typing method. Journal of Clinical Microbiology, 47(3), 652-659. https://doi.org/10.1128/JCM.01900-08
- 68. Xie, T., Yu, Q., Tang, X., Zhao, J. & He, X. (2020). Prevalence, antibiotic susceptibility, and characterization of Vibrio parahaemolyticus isolates in China. FEMS Microbiology Letters, 367(16).

https://doi.org/10.1093/femsle/fnaa136